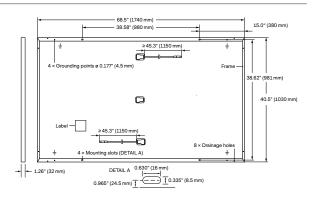
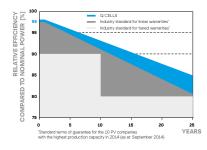


THE IDEAL SOLUTION FOR:



Rooftop arrays on residential buildings

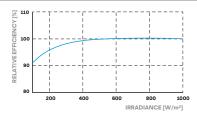
Rooftop arrays on commercial/industrial buildings



ELECTRICAL CHARACTERISTICS

IUM PERFORMANCE AT STANDARD TEST O	CONDITIO	NS, STC1 (POWE	D TOLEDANIOE : EVALL			
Power at MPP¹			ER TOLERANCE +5 W / -C	W)		
	P_{MPP}	[W]	340	345	350	355
Short Circuit Current ¹	I _{sc}	[A]	10.68	10.73	10.79	10.84
Open Circuit Voltage ¹	Voc	[V]	40.24	40.49	40.73	40.98
Current at MPP	I _{MPP}	[A]	10.16	10.22	10.27	10.33
/oltage at MPP	V _{MPP}	[V]	33.45	33.76	34.07	34.38
Efficiency ¹	η	[%]	≥19.0	≥19.3	≥19.5	≥19.8
IUM PERFORMANCE AT NORMAL OPERAT	NG CONE	DITIONS, NMOT	2			
Power at MPP	P _{MPP}	[W]	254.5	258.2	261.9	265.7
Short Circuit Current	I _{sc}	[A]	8.60	8.65	8.69	8.74
Open Circuit Voltage	Voc	[V]	37.94	38.17	38.41	38.65
Current at MPP	I _{MPP}	[A]	8.00	8.04	8.09	8.13
/oltage at MPP	V _{MPP}	[V]	31.81	32.10	32.40	32.69
	Open Circuit Voltage¹ Current at MPP Voltage at MPP Efficiency¹ UM PERFORMANCE AT NORMAL OPERATI Ower at MPP Ehort Circuit Current Open Circuit Voltage Current at MPP	Open Circuit Voltage¹ Voc Current at MPP I _{MPP} Voltage at MPP V _{MPP} Efficiency¹ ¶ UM PERFORMANCE AT NORMAL OPERATING CONDITIONS P _{MPP} Short Circuit Current I _{SC} Open Circuit Voltage V _{OC} Current at MPP I _{MPP}	Open Circuit Voltage¹ Voc [V] Current at MPP I _{MPP} [A] Voltage at MPP V _{MPP} [V] Vfficiency¹ n [%] UM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOTOWER at MPP P _{MPP} [W] Vower at MPP P _{MPP} [W] Short Circuit Current I _{SC} [A] Open Circuit Voltage V _{OC} [V] Current at MPP I _{MPP} [A]	Open Circuit Voltage¹ V _{OC} [V] 40.24 Current at MPP I _{MPP} [A] 10.16 Voltage at MPP V _{MPP} [V] 33.45 Efficiency¹ η [%] ≥19.0 UM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT² Vower at MPP [W] 254.5 Short Circuit Current I _{SC} [A] 8.60 Open Circuit Voltage V _{OC} [V] 37.94 Current at MPP I _{MPP} [A] 8.00	Open Circuit Voltage¹ V _{OC} [V] 40.24 40.49 Current at MPP I _{MPP} [A] 10.16 10.22 Voltage at MPP V _{MPP} [V] 33.45 33.76 difficiency¹ η [%] ≥19.0 ≥19.3 UM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT² Vower at MPP [W] 254.5 258.2 chort Circuit Current I _{SC} [A] 8.60 8.65 Open Circuit Voltage V _{OC} [V] 37.94 38.17 current at MPP I _{MPP} [A] 8.00 8.04	Open Circuit Voltage¹ V _{oc} [V] 40.24 40.49 40.73 Current at MPP I _{MPP} [A] 10.16 10.22 10.27 Voltage at MPP V _{MPP} [V] 33.45 33.76 34.07 Efficiency¹ η [%] ≥19.0 ≥19.3 ≥19.5 UM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT² Vower at MPP P _{MPP} [W] 254.5 258.2 261.9 Short Circuit Current I _{SC} [A] 8.60 8.65 8.69 Open Circuit Voltage V _{OC} [V] 37.94 38.17 38.41 Current at MPP I _{MPP} [A] 8.00 8.04 8.09

 $^{1}\text{Measurement tolerances P}_{\text{MPP}}\pm3\%; |_{\text{SC}}; V_{\text{OC}}\pm5\% \text{ at STC}; 1000 \text{W/m}^{2}, 25\pm2\text{°C}, \text{AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}800 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}8000 \text{W/m}^{2}, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \bullet ^{2}8000 \text{W/m}^{2}, \text{NM$


Q CELLS PERFORMANCE WARRANTY

At least 98% of nominal power during first year. Thereafter max. 0.54% degradation per year. At least 93.1% of nominal power up to 10 years. At least 85% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organization of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25 °C, 1000 W/m²)

TEMPERATURE COEFFICIENTS							
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27
Temperature Coefficient of P _{MPP}	γ	[%/K]	-0.36	Normal Module Operating Temperature	NMOT	[°F]	109±5.4 (43±3°C)

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage V _{SYS}	[V]	1000 (IEC)/1000 (UL)	Safety Class	II	
Maximum Series Fuse Rating	[A DC]	20	Fire Rating based on ANSI / UL 1703	C (IEC)/TYPE 2 (UL)	
Max. Design Load, Push / Pull ³	[lbs/ft ²]	75 (3600 Pa) / 55 (2667 Pa)	Permitted Module Temperature	-40°F up to +185°F	
Max. Test Load, Push / Pull ³	[lbs/ft ²]	113 (5400 Pa) / 84 (4000 Pa)	on Continuous Duty	(-40°C up to +85°C)	

QUALIFICATIONS AND CERTIFICATES

PACKAGING INFORMATION

UL 1703, VDE Quality Tested, CE-compliant, IEC 61215:2016, IEC 61730:2016, Application Class II, U.S. Patent No. 9,893,215 (solar cells)

³ See Installation Manual

Number of Modules per Pallet	32
Number of Pallets per 53' Trailer	28
Number of Pallets per 40' HC-Container	24
Pallet Dimensions (L×W×H)	$71.5 \times 45.3 \times 48.0$ in $(1815 \times 1150 \times 1220$ mm)
Pallet Weight	1505 lbs (683 kg)

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Specifications subject to technical changes © **Q CELLS** Q.PEAK DUO-G6+_340-355_2019-06_Rev01_